Majorization in quantum adiabatic algorithms

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Majorization in Quantum Adiabatic Algorithms

We study the Majorization arrow in a big class of quantum adiabatic algorithms. In a quantum adiabatic algorithm, the ground state of the Hamiltonian is a guide state around which the actual state evolves. We prove that for any algorithm of this class, step-by-step majorization of the guide state holds perfectly. We also show that step-by-step majorization of the actual state appears if the run...

متن کامل

Comments on Adiabatic Quantum Algorithms

Recently a method for adiabatic quantum computation has been proposed and there has been considerable speculation about its efficiency for NP-complete problems. Heuristic arguments in its favor are based on the unproven assumption of an eigenvalue gap. We show that, even without the assumption of an eigenvalue gap, other standard arguments can be used to show that a large class of Hamiltonians ...

متن کامل

Quantum Adiabatic Algorithms and Large Spin Tunnelling

We provide a theoretical study of the quantum adiabatic evolution algorithm with different evolution paths proposed in [ 11. The algorithm is applied to a random binary optimization problem (a version of the 3-Satisfiability problem) where the n-bit cost function is symmetric with respect to the permutation of individual bits. The evolution paths are produced, using the generic control Hamilton...

متن کامل

Quantum Adiabatic Evolution Algorithms versus Simulated Annealing

We explain why quantum adiabatic evolution and simulated annealing perform similarly in certain examples of searching for the minimum of a cost function of n bits. In these examples each bit is treated symmetrically so the cost function depends only on the Hamming weight of the n bits. We also give two examples, closely related to these, where the similarity breaks down in that the quantum adia...

متن کامل

Limitations of Some Simple Adiabatic Quantum Algorithms

Let H(t) = (1−t/T )H0+(t/T )H1, t ∈ [0, T ], be the Hamiltonian governing an adiabatic quantum algorithm, where H0 is diagonal in the Hadamard basis and H1 is diagonal in the computational basis. We prove that H0 and H1 must each have at least two large mutually-orthogonal eigenspaces if the algorithm’s running time is to be subexponential in the number of qubits. We also reproduce the optimali...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review A

سال: 2006

ISSN: 1050-2947,1094-1622

DOI: 10.1103/physreva.74.042320